Дапамажыце dev.by 🤍
Падтрымаць

С чего начать: подборка курсов по компьютерному зрению

Пакінуць каментарый
С чего начать: подборка курсов по компьютерному зрению

Предположим, у вас есть идея научить бездушный ноутбук узнавать вашего кота. Или наводить смартфон на игроков чемпионата по баскетболу, чтобы приложение подсказывало вам их имена, годы рождения, процент попаданий и годовую зарплату. Всё это — это поводы углубиться в изучение машинного зрения.

Читать далее

Иллюстрация: iamWire

Краткий ликбез

Компьютерное (машинное) зрение — это набор технологий, методов и алгоритмов, целью которых является «научить бездушный компьютер обозревать окружающую действительность с некоторой долей оразумения».

Сегодня процесс машинного зрения реализуется через «фильтрацию» изображений на необходимый ряд признаков и обработку результатов этой фильтрации. Поэтому, прежде чем начинать разговор об излюбленных нейросетях и машинном обучении, важно понять, что основа компьютерного зрения — это именно обработка изображений. Таким образом, единственный способ позволить компьютеру «увидеть» нашу реальность — дать ему ряд нужных признаков и попросить найти их на изображении.

К примеру, есть задача научить ваш MacBook узнавать кота в видеочате в скайпе. Для начала нужно «рассказать» машине об основных признаках кота. Затем — показывать фото котов: белых, серых, маленьких, больших, размытых, четких, в светлой комнате, темной. Чем больше разных котов увидит машина, тем лучше она адаптируется и с большей вероятностью начнёт узнавать кота в разных условиях. Такая методика называется глубинным обучением, оно же и является основной сложностью сегодня, потому что исследователь всегда остаётся ограничен базой изображений.

Затем можно отправиться в полевые условия и начать видеочат с котом. Компьютер захватывает сцену реального мира из видеопотока, сканирует её на наличие признаков кота, и, найдя их, сигнализирует об этом.

Исследователи пытаются найти совершенно иные подходы к компьютерному зрению, однако анализ изображения и машинное обучение — пока единственный способ «увидеть» нас для компьютера. 

С чего начать обучение?

ВАРИАНТ 1: Онлайн-курсы. Платные и бесплатные

  1.  

    Introduction to Computer Vision, Udacity (бесплатно).


    Четырёхмесячный курс о классической теории компьютерного зрения. Визуальная система человека и работа с изображением: обработка, освещение, движение, классификация и распознавание;

  2. Computer Vision, Center For Research in Computer Vision (бесплатно).
    Курс из 20 лекций по 45-90 минут. Академично и глубоко рассматриваются фундаментальные матрицы изображений, оптический поток, масштабно-инвариантное преобразование признаков, различные алгоритмы и методы работы с изображением;
  3. Введение в компьютерное зрение, Лекториум (бесплатно).
    В курсе рассматривают как базовые понятия компьютерного зрения, так и ряд современных алгоритмов, позволяющих решать практические задачи. Отдельно отмечают связь методов компьютерного зрения с обработкой зрительной информации в мозгу человека;
  4. Deep Learning in Computer Vision, Coursera (бесплатно).
    Этот пятый курс из семи в специализации «Машинное обучение». Речь пойдет о распознавании изображений и видео, включая классификацию, поиск изображений, методы обнаружения объектов, отслеживание объектов в видео, распознавание человеческих действий и, наконец, редактирование и создание новых изображений;
  5. Computer Vision Courses, Udemy (платно, от 10$).
    Ряд платных курсов, среди которых можно найти и изучить основы машинного обучения, наиболее известнын готовые библиотеки и технологии для работы с CV.

Часть онлайн-курсов посвящена работе с OpenCV — одной из популярных библиотек с открытым кодом, которая предоставляет набор типов данных и алгоритмов для обработки изображений:

Иллюстрация: xerox

ВАРИАНТ 2: Читать книги

Хотя компьютерное зрение — область, которую невозможно объять без реального программирования, подковаться теоретически тоже будет полезно. Для этого стоит обратить внимание на следущие издания:

  1. Richard Szeliski, Computer Vision: Algorithms and Applications;
  2. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference;

  3. Hairong Qi, Wesley E. Snyder Fundamentals of Computer Vision.

ВАРИАНТ 3: Работа

Можно старым «дедовским способом» найти работу с подходящим проектом, и узнавать, учиться и экспериментировать непосредственно в процессе.

Будущее компьютерного зрения

Исследователи прогнозируют использование компьютерного зрения в будущем практически во всех областях жизни человека: робототехника, биометрика, медицина, индустрия развлечений. По прогнозам Microsoft, к 2027 году появятся решения, способные не просто записывать изображение окружающего мира, а действительно «видеть» его, помогать в работе и в повседневной жизни людям самых разных сфер деятельности.

Чытайце таксама
TinyML, No-code и обучение с подкреплением: новейшие тренды в машинном обучении
TinyML, No-code и обучение с подкреплением: новейшие тренды в машинном обучении
TinyML, No-code и обучение с подкреплением: новейшие тренды в машинном обучении
BBC: система распознавания лиц в Москве состоит из четырех алгоритмов. Они определяют эмоции
BBC: система распознавания лиц в Москве состоит из четырех алгоритмов. Они определяют эмоции
BBC: система распознавания лиц в Москве состоит из четырех алгоритмов. Они определяют эмоции
AI научился предсказывать преступления за неделю до их совершения
AI научился предсказывать преступления за неделю до их совершения
AI научился предсказывать преступления за неделю до их совершения
Разработчик прошел два топовых курса по машинному обучению и выбрал лучший
Разработчик прошел два топовых курса по машинному обучению и выбрал лучший
Разработчик прошел два топовых курса по машинному обучению и выбрал лучший
Сегодня в свободном доступе в сети можно найти массу материалов по машинному обучению (МО), но подобрать наиболее оптимальный ресурс может быть довольно сложно. Программист и разработчик Логан Спирс прошёл курс по машинному обучению на Coursera и краткосрочную программу для разработчиков алгоритмов МО от Udacity. Для тех, у кого нет времени изучить оба, Спирс сделал сравнение двух программ, которое поможет определиться с выбором.
2 каментарыя

Хочаце паведаміць важную навіну? Пішыце ў Telegram-бот

Галоўныя падзеі і карысныя спасылкі ў нашым Telegram-канале

Абмеркаванне
Каментуйце без абмежаванняў

Рэлацыраваліся? Цяпер вы можаце каментаваць без верыфікацыі акаўнта.

Каментарыяў пакуль няма.