Дапамажыце dev.by 🤍
Падтрымаць

DeepMind научили AI выигрывать игры, не зная правил

В AI-подразделении Alphabet разработали новый алгоритм, который умеет выигрывать в игры, правила которых ему заранее объяснили, сообщает Engadget. Это достижение позволит системам на основе искусственного интеллекта адаптироваться к незнакомым ситуациям в реальном мире, для которых нет специально подготовленных алгоритмов.

Пакінуць каментарый

В AI-подразделении Alphabet разработали новый алгоритм, который умеет выигрывать в игры, правила которых ему заранее объяснили, сообщает Engadget. Это достижение позволит системам на основе искусственного интеллекта адаптироваться к незнакомым ситуациям в реальном мире, для которых нет специально подготовленных алгоритмов.

В 2016 году программа AlphaGo, обученная DeepMind на записях игровых матчей между людьми, смогла обыграть лучших мировых профессионалов по игре го. Новый вариант алгоритма, AlphaGo Zero, тренировался уже без участия человека, играя сама с собой. За ним последовал AlphaZero — единый алгоритм, умеющий играть в шахматы, сёги и го. Все три версии заранее знали правила игр, с которыми работали.

Последняя разработка DeepMind под названием MuZero в правилах не нуждается: алгоритм способен сам познавать их в процессе обучения, планировать ходы и выигрывать. Кроме того, ему под силу игры Atari. После обучения MuZero показывает равные или даже более высокие результаты по сравнению с предшественниками.

Цель исследователей — создать единый алгоритм, который позволит AI рассчитывать дальнейшие действия, не зная правил и условий в тех или иных обстоятельствах. Это довольно сложно реализовать для головоломок вроде шахмат или го, где конкретная последовательность шагов приводит к победе или поражению. В жизненных ситуациях неопределённости гораздо больше, поэтому для обработки вариантов поведения умным системам нужен ещё более мощный алгоритм.

Чем больше времени алгоритму давалось на раздумье, тем эффективнее его были решения. Но даже с ограничениями — исследователи поставили лимит на количество симуляций, который алгоритму разрешалось «прогнать» перед тем, как сделать ход, — MuZero добился хороших показателей.

Что касается прикладной пользы MuZero, в DeepMind считают, что сможет применяться для решения сложных задач, например, в робототехнике.

Чытайце таксама
Горшая ў Еўропе: Беларусь засвяцілася ў сусветным рэйтынгу ШІ
Горшая ў Еўропе: Беларусь засвяцілася ў сусветным рэйтынгу ШІ
Горшая ў Еўропе: Беларусь засвяцілася ў сусветным рэйтынгу ШІ
5 каментарыяў
OpenAI можа забраць да 40% сусветнай памяці — рынак рыхтуецца да дэфіцыту
OpenAI можа забраць да 40% сусветнай памяці — рынак рыхтуецца да дэфіцыту
OpenAI можа забраць да 40% сусветнай памяці — рынак рыхтуецца да дэфіцыту
1 каментарый
Тэхкампаніі дзеля ШІ трапілі ў рэкордныя даўгі за ўсю гісторыю галіны
Тэхкампаніі дзеля ШІ трапілі ў рэкордныя даўгі за ўсю гісторыю галіны
Тэхкампаніі дзеля ШІ трапілі ў рэкордныя даўгі за ўсю гісторыю галіны
1 каментарый
Галоўны ШІ-навуковец Meta назваў агульны ШІ «лухтой». У Google не пагадзіліся
Галоўны ШІ-навуковец Meta назваў агульны ШІ «лухтой». У Google не пагадзіліся
Галоўны ШІ-навуковец Meta назваў агульны ШІ «лухтой». У Google не пагадзіліся

Хочаце паведаміць важную навіну? Пішыце ў Telegram-бот

Галоўныя падзеі і карысныя спасылкі ў нашым Telegram-канале

Абмеркаванне
Каментуйце без абмежаванняў

Рэлацыраваліся? Цяпер вы можаце каментаваць без верыфікацыі акаўнта.

Каментарыяў пакуль няма.