Самое важное о Machine Learning за 3 месяца. Курс от фаундера DeepLearning.AI Эндрю Ын
Хотите изучить фундаментальные концепции искуственного интеллекта? Есть уникальная возможность сделать это под руководством Эндрю Ын — ученого-провидца и основателя DeepLearning.AI, который возглавлял исследования по машинному обучению в Стенфорде. Рассказываем про его базовый трехмесячный курс для начинающих.
Примечание Adviser
В статье есть ссылки партнеров. Это значит, что если вы что-то покупаете с нашей помощью — вы также поддерживаете dev.by. (Вот другой способ).
При этом редакция и авторы независимы в выборе темы, концепции материала, фокуса описания, подхода к услугам или товарам. Прежде чем что-то советовать, мы много читаем и смотрим по теме, говорим с экспертами.
Редакция может выражать свое мнение и пробовать всё на себе.
Если рекомендательный материал обновляется, мы указываем, что и когда поменялось, в самом начале.
Специализация Machine Learning на Coursera
Специализация «Машинное обучение» — фундаментальная онлайн-программа, созданная в сотрудничестве между DeepLearning.AI и Stanford Online. Ориентированная на новичков, она научит основам машинного обучения и использованию этих методов для создания реальных приложений ИИ.
Преподаватель — провидец в области AI Эндрю Ын. Он возглавлял важнейшие исследования в Стэнфордском университете и новаторскую работу в Google Brain, Baidu и Landing.AI, направленную на развитие сферы AI.
Специализация дает развернутое представление о современном машинном обучении. Основное, что вы узнаете:
- Контролируемое обучение: множественная линейная регрессия, логистическая регрессия, нейронные сети и деревья решений.
- Неконтролируемое обучение: кластеризация, снижение размерности, рекомендательные системы.
- Некоторые из лучших практик, используемых в Кремниевой долине для инноваций в области искусственного интеллекта и машинного: оценка и настройка моделей, подход к повышению производительности, ориентированный на данные, и многое другое.
За время обучения вы освоите ключевые концепции и получите практическое понимание, как быстро и эффективно применять ML для решения сложных реальных задач. Если хотите построить карьеру в области машинного обучения, эта специализация — хороший старт.
К концу обучения вы будете готовы:
- Строить модели машинного обучения на Python с помощью популярных библиотек машинного обучения NumPy и scikit-learn.
- Строить и обучать модели машинного обучения под наблюдением для задач прогнозирования и бинарной классификации, включая линейную регрессию и логистическую регрессию.
- Строить и обучать нейронные сети с помощью TensorFlow для выполнения многоклассовой классификации.
- Применяйте лучшие практики разработки машинного обучения, чтобы ваши модели обобщались на данные и задачи в реальном мире.
- Строить и использовать деревья решений и методы ансамбля деревьев, включая случайные леса и усиленные деревья.
- Использовать методы обучения без контроля для обучения без контроля: в том числе кластеризацию и обнаружение аномалий.
- Строить рекомендательные системы с использованием метода коллаборативной фильтрации и метода глубокого обучения на основе контента.
- Строить модели глубокого обучения с подкреплением.
Курс получил оценку от студентов 4.9 из 5 (на основании почти 22 тыс. ревью).
TIP от Adviser: Учиться на Coursera выгоднее с подпиской Coursera Plus. За $59 в месяц можно пройти неограниченное число учебных программ из более чем 7000. Это идеальный вариант, если вы готовы посвятить много времени учебе.
Читать на dev.by