Математика для Machine Learning и Data Science: основы, которые точно надо знать
Несмотря на кризис в IT, специалисты по машинному обучению и науке о данных сейчас на пике востребованности. Поэтому один из самых популярных курсов на Coursera — программа по математике, которая применяется в этих областях.
Решили разобраться, так ли критичны эти знания на самом деле, а заодно изучить программу курса.
Data Science и Machine Learning — сферы IT с довольно высоким порогом входа, часто успешные специалисты имеют профильное высшее образование. Тем, кто стремится попасть в профессию уже во взрослом возрасте, приходится многое наверстывать. Если базовое программирование на каком-нибудь языке реально освоить за несколько месяцев, то путь в ML и Data Science более долгий. Но усилия окупаются, профессии в этой сфере точно не устареют.
Кому стоит идти в Machine Learning и Data Science
Специалисты в области машинного обучения и науки о данных более редкие, чем разработчики. Начинающим программистам бывает особенно трудно трудоустроиться сейчас, когда рынок сжался, но спецы по ML и DS всегда в цене. Поэтому, если вы готовы потратить чуть больше времени для обучения — это надежные карьерные траектории. Также в эти сферы могут переходить и действующие IT-специалисты, чтобы повысить свою востребованность или просто попробовать что-то новое. С любым опытом в IT за плечами осваивать смежные специальности будет гораздо легче.
По информации What’s the Big Data к 2030 году ожидается, что объем мирового рынка машинного обучения превысит 5 млрд. долларов.
По данным издания Demand Sage, с 2023 года по 2030 год спрос на спецов по ML возрастет до 22% — почти на четверть. А 48% опрошенных компаний так или иначе уже используют ИИ в работе — это данные на 2024 год. Вероятно, со временем число таких компаний будет только увеличиваться.
Data Science — тоже растущая сфера. По оценкам американского бюро труда, через 10 лет спрос на таких спецов вырастет на 32%. А по опросу 365 Data Science, только 35% спецов в этой сфере ранее работали на той же позиции: значит, 65% — айтишники, перешедшие из других сфер и новички.
Наука о данных и машинное обучение — сравнительно молодые сферы. Хоть порог входа и высокий, они открыты для начинающих — в частности, из-за повышенного спроса на специалистов. Также эти сферы очень обширны: можно выбрать узкую специальность по душе, расти как горизонтально, так и вертикально.
Зачем Data Scientists нужна математика и что надо знать специалисту
Само по себе машинное обучение невозможно без знаний математики, ведь оно основано на алгоритмах, причем на математических. Что касается науки о данных — это сфера, в которой нужно глубокое понимание анализа. Кроме того, в DS и машинное обучение применяется очень активно. Поэтому мы и говорим об этих двух специальностях в связке.
Итак, для работы с машинным обучением нужны следующие теоретические основы:
математический анализ;
линейная алгебра;
аналитическая геометрия;
статистика;
теория вероятностей.
Какую-то часть из этих тем охватывает школьная программа стран постсоветского пространства, но во многих случаях знания требуются более глубокие. Фундаментальные знания математики составляют основу алгоритмов машинного обучения. А также они важны для понимания анализа данных.
Особенности математики для Data Science
В рамках DS могут быть разные специализации: кому-то нужны более глубокие знания математики, кого-то устроят относительно поверхностные. Это обсуждают айтишники на Reddit. Если заниматься прикладной наукой о данных — например, для маркетинговых нужд компаний — основной упор надо делать на статистику. А если хочется работать с алгоритмами, потребуются более обширные математические знания.
Если вы пока не знаете, чем конкретно хотите заниматься в рамках DS, дополнительные знания точно не будут лишними — ведь они позволят глубже понимать выбранную сферу. Впрочем, некоторые Data Scientists для начала действительно ограничиваются линейной алгеброй и статистикой, а по мере роста потребности добирают знания уже на рабочем месте.
Вопрос лишь в том, чтобы получить это самое рабочее место. Для новичка без опыта более обширные математические знания могут стать конкурентным преимуществом при трудоустройстве.
Один из пользователей отмечает, что в индустрии есть два подхода: одни считают, что начинать надо с математики, а потом осваивать код, другие — что можно начать с программирования и потихоньку доучивать математику. И тот, и другой вариат — норма, можно выбирать комфортную траекторию. Но в итоге все равно придется освоить и то, и другое.
Особенности математики для Machine Learning
Судя по обсуждениям на Reddit, новички регулярно задаются вопросом, обязательно ли учить математику для работы в ML. Вероятно, многим этого делать не хочется. Но опытные пользователи всегда говорят, что без математики никуда.
Однако в обсуждениях отмечают, что знание математики нельзя оценивать в терминах «знает» и «не знает» — это шкала. И кому-то достаточно будет продвинуться до середины этой шкалы, а кому-то — до конца, все будет зависеть от ваших профессиональных интересов.
Некоторые отмечают, что для старта математика требуется в меньшей степени, но эти знания сделают все остальное более понятным. То есть человеку с глубокими знаниями математики будет легче осваивать концепции и инструменты машинного обучения. А если в математике пробелы, вникать во многие вещи будет трудно.
Учебная программа позволит вникнуть в математику с нуля: вспомнить школьную программу и освоить высшую математику, необходимую для работы. Курс подходит для начинающих. Если вы хотите с уверенностью заниматься ML или DS, но пока не изучали ничего в своей области, эта программа вполне подойдет — вы сначала освоите математику, а потом будет легче понимать все остальное. Но также курс будет полезен и для действующих спецов, которые ощущают существенную нехватку знаний. И, конечно, лекции будет полезны тем из новичков, кто освоил какие-то основы ML и DS, но продолжает самообразование.
Курс фокусируется только на математике, здесь не изучают код и технологии. Но из всей математики выбраны именно практически полезные темы, а все материалы хорошо структурированы и доступно изложены. Лекторы курса работают в крупнейшей компании в сфере машинного обучения — Deeplearning.ai. Они точно знают, какие теоретические знания сейчас востребованы и пригождаются в работе.
В программе:
линейная алгебра — векторная и матричная;
работа с различными типами функций;
теория вероятностей и методы статистики.
Формат и длительность курса
По оценке Coursera, курс займет три месяца при загрузке 5 часов в неделю. Можно неспешно подтягивать знания, совмещая учебу с работой или другими курсами. А можно интенсивно заниматься и осваивать программу быстрее.
Стоимость
Курс доступен по подписке за $39 в месяц — чем быстрее учитесь, тем меньше платите. Также есть бесплатный пробный период 7 дней.
Математика — необходимая часть образовательного трека для всех, кто всерьез решил заниматься ML и DS. Изучать теорию можно и самостоятельно по учебникам, и по видео на YouTube. Но на курсе вы можете получить все актуальные знания структурировано и в одном месте — к тому же, от компании-лидера в индустрии. На каком бы этапе обучения вы сейчас ни находились, курс математики — полезная инвестиция в профессиональное будущее.
8 онлайн-курсов и интенсивов для Product Manager (февраль, 2024)
Собрали проверенные онлайн-курсы и интенсивы для Product Manager. В этой подборке: курсы от действующего PM в Microsoft, актуальная специализация по управлению продуктами в сфере AI, курсы для начинающих специалистов и лайфхаки как проходить собеседования на позицию продакта.
Как очистить Mac? Подборка платных приложений для macOS (cо скидками Black Friday 2024)
Чем просканировать накопившийся за время работы мусор на диске вашего в Мака и навести порядок? Рассказываем о 7 платных приложениях для очистки macOS. Мы не называем их лучшими — просто советуем обратить на них внимание.
11 лучших сертификаций Coursera, чтобы освоить новую специальность (август, 2023)
Проанализировали Coursera в поисках лучших профессиональных программ на 2023 год, прохождение которых позволит получить востребованную специальность. Рассказываем, на какие направления обратить внимание и как сертификация Coursera помогает изменить вашу карьеру.
12 онлайн-курсов по языку Java для новичков и профессионалов (август, 2023)
Java по-прежнему входит в список самых популярных языков программирования. Вместе с Digitaldefynd мы составили список курсов по Java, которые подойдут как новичкам, так и людям с опытом программирования, чтобы освоить этот востребованный язык.
Хотите сообщить важную новость? Пишите в Telegram-бот
Главные события и полезные ссылки в нашем Telegram-канале
Обсуждение
Комментируйте без ограничений
Релоцировались? Теперь вы можете комментировать без верификации аккаунта.
Релоцировались? Теперь вы можете комментировать без верификации аккаунта.