TinyML, No-code и обучение с подкреплением: новейшие тренды в машинном обучении
Пока 20% топ-менеджеров утверждают, что машинное обучение является существенной частью их бизнеса, неудивительно, что стоимость мирового рынка машинного обучения, по некоторым оценкам, достигнет $117 млрд к концу 2027 года.
Мы перевели материал Udacity о семи самых обсуждаемых тенденциях в машинном обучении в 2022 году.
Не требует вмешательства человека, поскольку алгоритмы предназначены для выявления невидимых групп данных и закономерностей. Этот тип обучения позволяет просматривать данные и выявлять сходства.
Обучение без учителя идеально подходит для компаний, которые хотят внедрить кросс-продажи. В качестве основного метода используется кластерный анализ, который позволяет извлекать данные для поиска группировок. Из алгоритмов применяются метод К-средних и иерархическая кластеризация.
Технология no-code, или программирование без написания кода, становится все более популярной. DataRobot, Clarifai и Teachable Machines — все это платформы, которые позволяют компаниям создавать продукты, не привлекая инженера или разработчика.
Вместо сложного кодирования используется простой способ оперирования элементами интерфейса Drag and Drop. Так можно сэкономить уйму времени и денег, которые обычно уходят на технических специалистов. Многие бизнес-аналитики не работают с кодом на продвинутом уровне, поэтому технологии no-code («без кода») и low-code («с небольшим участием разработчиков») все чаще применяются в решении аналитических задач. В машинном обучении даже опытные инженеры используют low-code инструменты при разработке решений.
Позволяет автоматизировать традиционный ручной процесс, например, маркировку данных. Работать с AutoML может любой желающий. Большой плюс — снижается цена человеческой ошибки. С другой стороны, автоматизация процессов значительно сокращает времязатраты — те же анализ и моделирование данных выполняются гораздо быстрее.
Бюджет тоже остается целее: например, используя полу- и самоконтроируемое обучение вы не тратитесь на аннотаторов для маркировки данных, поскольку количество данных, помеченных вручную, будет сведено к минимуму.
4. Управление эксплуатацией машинного обучения (MLOPs)
MLOPs фокусируется на эффективности моделей машинного обучения, когда они находятся на стадии развертывания и обслуживания. Предполагает взаимодействие Data Science специалистов с членами команды, контролирующими процессы, чтобы максимально ускорить работу. Этот метод помогает решить проблему неэффективной коммуникации.
5. Обучение с подкреплением (Reinforcement Learning)
Разработка ПО проходит по пути наименьшего сопротивления за счет опыта взаимодействия с окружающей средой. Этот метод использует систему вознаграждения и наказания и позволяет машине учиться, экспериментируя с потенциальным направлением, а затем решая, какое из них принесет максимальное вознаграждение, что позволяет ей эффективно находить решения проблем.
RPA позволяет системе автоматизировать любой повторяющийся процесс. В это время пользователь может сосредоточиться на других задачах, требующих критического мышления. RPA требует предварительно определить предмет, прежде чем RPA-бот сможет его обработать. Минимальное отклонение приведет к сбою работы бота. Машинное обучение, встроенное в RPA, позволяет сделать внесение изменений в процесс гораздо более гибким.
Этот метод набирает популярность для моделей ИИ и машинного обучения, где используется аппаратное оборудование с ограниченными возможностями (это, например, микроконтроллеры или счетчики коммунальных услуг). Алгоритмы предназначены для распознавания простых команд по голосам или жестам.
8 онлайн-курсов и интенсивов для Product Manager (февраль, 2024)
Собрали проверенные онлайн-курсы и интенсивы для Product Manager. В этой подборке: курсы от действующего PM в Microsoft, актуальная специализация по управлению продуктами в сфере AI, курсы для начинающих специалистов и лайфхаки как проходить собеседования на позицию продакта.
Как очистить Mac? Подборка платных приложений для macOS (cо скидками Black Friday 2024)
Чем просканировать накопившийся за время работы мусор на диске вашего в Мака и навести порядок? Рассказываем о 7 платных приложениях для очистки macOS. Мы не называем их лучшими — просто советуем обратить на них внимание.
11 лучших сертификаций Coursera, чтобы освоить новую специальность (август, 2023)
Проанализировали Coursera в поисках лучших профессиональных программ на 2023 год, прохождение которых позволит получить востребованную специальность. Рассказываем, на какие направления обратить внимание и как сертификация Coursera помогает изменить вашу карьеру.
12 онлайн-курсов по языку Java для новичков и профессионалов (август, 2023)
Java по-прежнему входит в список самых популярных языков программирования. Вместе с Digitaldefynd мы составили список курсов по Java, которые подойдут как новичкам, так и людям с опытом программирования, чтобы освоить этот востребованный язык.
Хотите сообщить важную новость? Пишите в Telegram-бот
Главные события и полезные ссылки в нашем Telegram-канале
Обсуждение
Комментируйте без ограничений
Релоцировались? Теперь вы можете комментировать без верификации аккаунта.
Релоцировались? Теперь вы можете комментировать без верификации аккаунта.