17% скидка на размещение рекламы на площадках devby — до 20 ноября. Клац!
Support us

TinyML, No-code и обучение с подкреплением: новейшие тренды в машинном обучении

Пока 20% топ-менеджеров утверждают, что машинное обучение является существенной частью их бизнеса, неудивительно, что стоимость мирового рынка машинного обучения, по некоторым оценкам, достигнет $117 млрд к концу 2027 года.

Мы перевели материал Udacity о семи самых обсуждаемых тенденциях в машинном обучении в 2022 году.

Оставить комментарий
TinyML, No-code и обучение с подкреплением: новейшие тренды в машинном обучении

Пока 20% топ-менеджеров утверждают, что машинное обучение является существенной частью их бизнеса, неудивительно, что стоимость мирового рынка машинного обучения, по некоторым оценкам, достигнет $117 млрд к концу 2027 года.

Мы перевели материал Udacity о семи самых обсуждаемых тенденциях в машинном обучении в 2022 году.

1. Обучение без учителя (Unsupervised Learning)

Не требует вмешательства человека, поскольку алгоритмы предназначены для выявления невидимых групп данных и закономерностей. Этот тип обучения позволяет просматривать данные и выявлять сходства.

Обучение без учителя идеально подходит для компаний, которые хотят внедрить кросс-продажи. В качестве основного метода используется кластерный анализ, который позволяет извлекать данные для поиска группировок. Из алгоритмов применяются метод К-средних и иерархическая кластеризация.

Посмотреть программу 

2. No-code и low-code обучение

Технология no-code, или программирование без написания кода, становится все более популярной. DataRobot, Clarifai и Teachable Machines — все это платформы, которые позволяют компаниям создавать продукты, не привлекая инженера или разработчика.

Вместо сложного кодирования используется простой способ оперирования элементами интерфейса Drag and Drop. Так можно сэкономить уйму времени и денег, которые обычно уходят на технических специалистов. Многие бизнес-аналитики не работают с кодом на продвинутом уровне, поэтому технологии no-code («без кода») и low-code («с небольшим участием разработчиков») все чаще применяются в решении аналитических задач. В машинном обучении даже опытные инженеры используют low-code инструменты при разработке решений.

Посмотреть программу 

3. Автоматизированное машинное обучение (AutoML)

Позволяет автоматизировать традиционный ручной процесс, например, маркировку данных. Работать с AutoML может любой желающий. Большой плюс — снижается цена человеческой ошибки. С другой стороны, автоматизация процессов значительно сокращает времязатраты — те же анализ и моделирование данных выполняются гораздо быстрее.

Бюджет тоже остается целее: например, используя полу- и самоконтроируемое обучение вы не тратитесь на аннотаторов для маркировки данных, поскольку количество данных, помеченных вручную, будет сведено к минимуму.

Посмотреть программу 

4. Управление эксплуатацией машинного обучения (MLOPs)

MLOPs фокусируется на эффективности моделей машинного обучения, когда они находятся на стадии развертывания и обслуживания. Предполагает взаимодействие Data Science специалистов с членами команды, контролирующими процессы, чтобы максимально ускорить работу. Этот метод помогает решить проблему неэффективной коммуникации.

Посмотреть программу 

5. Обучение с подкреплением (Reinforcement Learning)

Разработка ПО проходит по пути наименьшего сопротивления за счет опыта взаимодействия с окружающей средой. Этот метод использует систему вознаграждения и наказания и позволяет машине учиться, экспериментируя с потенциальным направлением, а затем решая, какое из них принесет максимальное вознаграждение, что позволяет ей эффективно находить решения проблем.

Посмотреть программу 

6. Роботизированная автоматизация процессов (RPA)

RPA позволяет системе автоматизировать любой повторяющийся процесс. В это время пользователь может сосредоточиться на других задачах, требующих критического мышления. RPA требует предварительно определить предмет, прежде чем RPA-бот сможет его обработать. Минимальное отклонение приведет к сбою работы бота. Машинное обучение, встроенное в RPA, позволяет сделать внесение изменений в процесс гораздо более гибким.

Посмотреть программу 

7. TinyML

Этот метод набирает популярность для моделей ИИ и машинного обучения, где используется аппаратное оборудование с ограниченными возможностями (это, например, микроконтроллеры или счетчики коммунальных услуг). Алгоритмы предназначены для распознавания простых команд по голосам или жестам.

Посмотреть программу

Заинтересованы в изучении машинного обучения и искусственного интеллекта?

Начните с курсов: Введение в машинное обучение с помощью PyTorch или Введение в машинное обучение с помощью TensorFlow в разделе «Школа искусственного интеллекта» от Udacity.

Уже знакомы с основами машинного обучения и хотите улучшить свои навыки? Ознакомьтесь с программами нано-образования для Инженера по машинному обучению для Microsoft Azure и DevOps-инженера.

Больше курсов на Udacity 

Читайте также
5 коротких курсов, которые помогут сохранить ментальное здоровье и не выгореть
5 коротких курсов, которые помогут сохранить ментальное здоровье и не выгореть
5 коротких курсов, которые помогут сохранить ментальное здоровье и не выгореть
Айтишники умеют решать сложные задачи, разруливать дедлайны и искать баги там, где их никто не видит. Но когда речь заходит об эмоциях, внимании к себе и внутреннем равновесии, большинство забывает, что психика — тоже система, требующая обновлений. А ментальное здоровье — фундамент, без которого продуктивность превращается в гонку на выживание.
Small Talk для айтишников: как научиться говорить не только о тасках и дедлайнах
Small Talk для айтишников: как научиться говорить не только о тасках и дедлайнах
Small Talk для айтишников: как научиться говорить не только о тасках и дедлайнах
Вы уверенно рассказываете о технических решениях, архитектуре и фреймворках, но разговор с коллегами о погоде или хобби вызывает лёгкое замешательство? Это нормально. Большинство IT-специалистов умеет объяснять сложное просто, но неформальная беседа получается далеко не у всех. Тем не менее, умение поддержать small talk — навык, который напрямую влияет на карьеру, особенно в международных командах.
2 комментария
Топ-3 курса, где можно прокачать память и концентрацию — чтобы быстрее учиться и меньше уставать
Топ-3 курса, где можно прокачать память и концентрацию — чтобы быстрее учиться и меньше уставать
Топ-3 курса, где можно прокачать память и концентрацию — чтобы быстрее учиться и меньше уставать
Мы тратим часы на книги, курсы и туториалы, но знания всё равно ускользают. И проблема тут не в сложности материала, а в том, как мы его усваиваем. Исследования утверждают: память и концентрацию можно развить. А результат от этого вы ощутите не только в работе, но и в восприятии мира.
Инвестиции для айтишников: 5 курсов, чтобы разбираться в ETF и начать торговать на Interactive Brokers
Инвестиции для айтишников: 5 курсов, чтобы разбираться в ETF и начать торговать на Interactive Brokers
Инвестиции для айтишников: 5 курсов, чтобы разбираться в ETF и начать торговать на Interactive Brokers
Стабильность — понятие иллюзорное. Технологии меняются быстрее, чем выходит очередной iPhone, а компании мгновенно перестраиваются под тренды и новые бизнес-модели. Поэтому всё больше айтишников задумывается о диверсификации доходов. В частности, через инвестиции в глобальные рынки. Но начать инвестировать — это не просто открыть счёт на Interactive Brokers и купить первый попавшийся ETF. Надо иметь стратегию, понимать риски и механизмы торговли, владеть инструментами. 
13 комментариев

Хотите сообщить важную новость? Пишите в Telegram-бот

Главные события и полезные ссылки в нашем Telegram-канале

Обсуждение
Комментируйте без ограничений

Релоцировались? Теперь вы можете комментировать без верификации аккаунта.

Комментариев пока нет.