В одном из исследований Стэнфордского университета и Google алгоритм машинного обучения должен был преобразовывать аэроснимки в карты улиц и наоборот. Но система научилась обманывать учёных, скрывая информацию в «почти неуловимом высокочастотном сигнале», сообщает TechCrunch.
Целью исследователей было ускорить и улучшить преобразование спутниковых фотографий в карты улиц с помощью нейросети CycleGAN. Но алгоритм начал показывать подозрительно высокие результаты: на восстановленных им изображениях местности было много деталей, которых не было на исходных картах улиц. Например, в процессе создания карт с фотографий удаляли люки на крышах домов, но при обратном процессе на воссозданных по картам картинках эти люки снова появлялись.
ИИ должен был научиться интерпретировать признаки одного из типов карт (фотографии или схемы улиц) и соотносить их с правильными признаками другого типа. При этом его оценивали по чёткости создаваемой карты и по тому, насколько сгенерированное им изображение было близко к заданной карте. Алгоритм же учился не различать типы карт, а кодировать признаки одного типа в другом. Он незаметно зашифровывал детали аэроснимков в карты улиц, делая тысячи мельчайших изменений цветов, которые не видны глазу человека, но легко считываются компьютером.
Как выяснилось, таким образом алгоритм может зашифровать любой фотоснимок в любую карту улиц. На иллюстрации ниже в блоке c видны небольшие изменения, которые систематически делал алгоритм, — они формируют общий контур фотоснимка. Их было бы невозможно заметить, не зная об их наличии.
По мнению TechCrunch, это говорит не об «интеллектуальности» алгоритма, а почти о противоположном, так как он учится не преобразовывать картинки и «умнеть», а находить обходные пути, которые человек не способен вычислить. При этом формально ИИ выполнил поставленную задачу. Эксперимент вновь показал известную с появления компьютеров проблему: «они делают точно то, что говорит человек».
Релоцировались? Теперь вы можете комментировать без верификации аккаунта.